
Conformal invariance and non-universality in quantum spin chains with a defect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L341

(http://iopscience.iop.org/0305-4470/19/6/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L341-L346. Printed in Great Britain 

I 
J I 

I J l  

I 

I 

I 

LETTER TO THE EDITOR 

J 

-- 

J 

Conformal invariance and non-universality in quantum spin 
chains with a defect 

L G Guimarles and J R Drugowich de Felicio 
Departamento de Fisica e CiBncia dos Materiais do Instituto de Fisica e Quimica de S o  
Carlos, Universidade de SHo Paulo, C P  369, SHo Carlos, 13560, Brazil 

Received 3 1 December 1985 

Abstract. We study quantum analogues of two-dimensional Ising models with a linear 
defect. Conformal invariance and scaling arguments are used to relate the exponent T*  
(of the time correlation function of the spin at the defect) to a finite chain mass-gap ratio. 
Close agreement is found with the pertinent exact results. 
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where 

for the case of figure 1, and 

for the ladder case (see figure l (b)) .  In equation (2) J ,  is the dual of the modified 
coupling J’ of figure 1 ( a )  

exp(-2P,J,) = tanh(PcJ’) (4) 

whereas J2 in equation (3)  is exactly equal to the modified coupling J’ of figure l (b) .  
Equation (1) was checked by Nightingale and Blote (1982) who calculated the defect 
susceptibility of finite strips to obtain y /  v and finally q*. As we know, usual finite-size 
scaling methods demand calculation of derivatives (magnetic susceptibility, for 
example, is the second derivative of the free energy with respect to magnetic field) 
which in turn requires diagonalisation of at least three Hamiltonians. 

An alternative way proposed by Turban (1985) is to obtain the defect exponent q* 
directly from the correlation length amplitude of a strip. In reality, this procedure is 
a generalisation of the remarkable universal relation between the correlation length 
amplitude and the bulk critical exponent q (Cardy 1984a) obtained by conformally 
mapping the plane onto a strip. The logarithmic mapping adequate for the strip 
geometry reduces the entire plane with a linear defect into a strip with two linear 
defects and periodic boundary conditions (figure 2). In addition, the asymptotic 

Figure 2. The conformal transformation w =In z maps the entire plane with a defect line 
onto a strip with periodic boundary conditions and two equidistant defects. 

behaviour of the scaling function near the defect is dominated by the defect exponent 
q* (Cardy 1984b) which guarantees the success of the amplitude method in obtaining 
the defect exponent. It is worthwhile mentioning, however, that the anomalous 
behaviour of q* is not shared by x, (half the critical exponent of the energy-energy 
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correlation function). To confirm the above statement we write the scaling relation 
satisfied by the defect free energy f* (difference between the free energy for the system 
with defect and the free energy for the homogeneous system) per spin as 

f*( t, h, 0, h,) = b-'f*(bYr, bYhh, by*D, bY;hl) ( 5 )  

where t = (T-  Tc)/  T,,  h is the bulk magnetic field, h,  is the magnetic field acting on 
the defect spins and D is the enhancement of the coupling (J' - J)/  J. From equations 
(1) and (5) it follows that D is responsible for the continuous variation of v*, its 
scaling dimension y* being zero, unless J' of figure l (b)  vanishes (in this case y* = -1 
as shown by Cardy (1984b)). The anomalous dimension xf of the energy operator 
conjugated to the enhanced coupling D is then given by 

VJ1, VJ, # 0 
if J2=0.  

xz = 1 -y* = 

Therefore the vanishing of y* opens the possibility of obtaining non-universal behaviour 
of q* but at the same time requires universality of the anomalous dimension of the 
energy operator (x, = 2 - 11 Y of the homogeneous Ising model is also equal to 1, since 
v = 1). This invariance of x, allows us to use conformal invariance methods to 
investigate non-universality in the Hamiltonian context, where the universal quantities 
are the ratios of mass gaps (Penson and Kolb 1984, Alcaraz er a1 1985). 

We have studied the Hamiltonians 

and 

which correspond to highly anisotropic versions of 2~ Ising models with linear defects 
(see figure 1). In equations ( 7 a )  and (76) U', U' are the Pauli matrices. The autocorrela- 
tion function of the spin at the defect has a power law decay whose index is 

where 

A =  K J K  (9a) 

A =  K / K 2  (96) 

for H,, and 

for H 2 .  These results were derived by Peschel and Schotte (1984) using bosonisation 
methods but can also be found by taking the Hamiltonian limit in equations (2) and 
(3). This problem has also been investigated by a real space renormalisation group 
method (Uzelac et a1 1981) which does not describe correctly the dependence of 77% 
on A. 

In this letter we will use the method of the amplitudes which consists in calculating 
the critical indices through the ratio of the mass gaps of finite rings. To study the 
defect exponent v: we need to obtain the ground and lowest excited states of the 
Hamiltonian Hr (Hr) for finite chains with two defects (at i = 1 and N / 2 +  1) and 
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periodic boundary conditions. Following Lieb et a1 (1981) we perform a Jordan-Wigner 
transformation (1928) so that H r  is given by 

H , N  = -2 &(c:c, - t>+  K l ( ~ k ~ 2 + l ~ N / 2 t 1  - 5 )  

+ E’ K ( C: ci - 4) + f K ( C: - ci)( c:, + c i+l )  

( 
I I 

(10) ) - f K ( c L -  cN)(c:+cl)[exp(irM)+ 11 

where in (Z’i) i takes all values except i = 1 and N / 2 +  1. The fermion creation and 
annihilation operators c+, c are given by 

M = Xj cTcj is the number of fermions, and the parity p = eiWM is conserved. The 
Hamiltonian ( lo ) ,  which can be written as 

with A and B given byt 

A = 2  

and 

B = 2  

K, K / 2  0 + K / 2 \  
K / 2  K K / 2  0 

0 K / 2  K K / 2  K / 2  K ,  K / 2  ] ( I 3 1  

i K / 2  K l  

(14) 

0 K / 2  
- K / 2  0 K / 2  0 

. .  . . .  
0 

* K / 2  - K / 2  0 I 

can be diagonalised by a new set of quasiparticle (fermion) operators q,, 7; where 

7, = C ( g p c , + h p c t )  
I 

satisfies the relation (Lieb et al 1961) 

[vu, HFI= A,va 
with 

H; = A,vLv, +constant. 
a 

t The sign of K in the matrices A and B is fixed by parity, 
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Substitution of equations (12) and (15) in equation (16) furnishes a system of coupled 
equations for g" and h" which can be written in a more convenient form in terms of 
the symmetric (4:) and antisymmetric (+?) linear combinations of g? and h?.  Then 
we finally get 

~ " ( A - B ) ( A + B )  = ~ : d "  (18a) 

+ " ( A + B ) ( A - B ) = A t + Q  (18b) 

which allows us to find the 'one-fermion' energies A, by diagonalisation of the matrix 
( A +  B ) ( A  - B) .  From the invariance of Tr[H], we obtain the constant in equation (17): 

constant = - 4 A". (19) 
U 

Proceeding in this way it is possible to obtain exactly the complete spectrum of Hr 
(as well as of Hr) for N -  100 sites in just 80 s on a VAX 11/780. For comparison 
we have applied Lanczos' method to find the ground and lowest excited states of those 
Hamiltonians and for N = 14 we spent about 20 min on the same computer (this 
relatively long time is due to the lack of cyclic invariance of the basis states). 

Once we have obtained the eigenvalues of Hr and HF we get the estimates for 
775 dividing the first gap: 

G = ,CEdd- ,Cyn (20) 

(21) 

where E:dd ( E T )  is the lowest energy of the odd (even) sector by 
I 

G = E""" , - E r n  

where ETen is the first excited state of the even sector. According to previous papers 
(Penson and Kolb 1984, Alcaraz et a1 1985) the ratio G / 6  is equal to the ratio (xz/xf) 
of the anomalous dimensions of the spin and energy density at the defect. Thus 

and according to equation ( 6 a )  175 is twice the ratio of gaps if K ,  # 0. Our results, 
shown in tables 1 and 2, are in complete agreement with equation (8) for any value 

Table 1. Estimates of the critical index r&, obtained by combining finite-size scaling and 
conformal invariance. 

A 

Lattice 0.25 0.50 1.50 3.00 

10 
20 
30 
40 
50 
60 
70 
80 
Exact 

0.024 62 
0.024 40 
0.024 36 
0.024 34 
0.024 33 
0.024 33 
0.024 32 
0.024 32 
0.024 32 

0.087 96 
0.087 34 
0.087 22 
0.087 17 
0.087 16 
0.087 15 
0.087 14 
0.087 13 
0.087 12 

0.393 79 0.636 23 
0.392 03 0.633 20 
0.391 71 0.632 69 
0.391 60 0.632 5 1 
0.391 55 0.632 43 
0.391 52 0.632 38 
0.391 50 0.632 36 
0.391 49 0.632 34 
0.391 45 0.632 29 
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Table 2. Estimates of the critical index T&, obtained by combining finite-size scaling and 
conformal invariance. 

A 

Lattice 0.25 0.50 1.75 2.50 

10 
20 
30 
40 
50 
60 
70 
80 
Exact 

0.715 32 
0.713 18 
0.712 76 
0.712 60 
0.712 53 
0.712 49 
0.712 47 
0.712 45 
0.712 40 

0.499 54 
0.497 49 
0.497 10 
0.496 96 
0.496 90 
0.496 86 
0.496 84 
0.496 85 
0.496 78 

0.110 28 0.059 45 
0.109 48 0.058 86 
0.109 34 0.058 75 
0.109 22 0.058 72 
0.109 27 0.058 70 
0.109 25 0.058 69 
0.109 25 0.058 69 
0.109 24 0.058 69 
0.109 22 0.058 67 

of A. We also notice the reasonable agreement already achieved with N = 10 (when 
Lanczos’ method is still quick enough). 

In conclusion we have used conformal invariance and finite-size scaling to obtain 
with precision the non-universal index 77% of the time correlation function of the spin 
in defected transverse Ising chains. Extension of this work to other models such as 
the spin-; X Y  chain as well as a complete study of the corrections to scaling are in 
progress. 
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One of us (JRDF) wishes to acknowledge profitable conversations with R Koberle 
and L N Oliveira. This work was supported in part by the Brazilian agencies FINEP, 
CNPq and FAPESP (Fundasgo de Amparo B Pesquisa do Estado de S i 0  Paulo). 
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